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Pref ace 

The response of students and teachers to the first five editions of Linear Algebra and Its 
Applications has been most gratifying. This Sixth Edition provides substantial support 
both for teaching and for using technology in the course. As before, the text provides 
a modern elementary introduction to linear algebra and a broad selection of interesting 
classical and leading-edge applications. The material is accessible to students with the 
maturity that should come from successful completion of two semesters of college-level 
mathematics, usually calculus. 

The main goal of the text is to help students master the basic concepts and skills they 
will use later in their careers. The topics here follow the recommendations of the original 
Linear Algebra Curriculum Study Group (LACSG), which were based on a careful 
investigation of the real needs of the students and a consensus among professionals in 
many disciplines that use linear algebra. Ideas being discussed by the second Linear 
Algebra Curriculum Study Group (LACSG 2.0) have also been included. We hope this 
course will be one of the most useful and interesting mathematics classes taken by 
undergraduates. 

What's New in This Edition 

x 

The Sixth Edition has exciting new material , examples, and online resources. After talk
ing with high-tech industry researchers and colleagues in applied areas, we added new 
topics, vignettes, and applications with the intention of highlighting for students and 
faculty the linear algebraic foundational material for machine learning, artificial intelli
gence, data science, and digital signal processing. 

Content Changes 
• Since matrix multiplication is a highly useful skill, we added new examples in Chap

ter 2 to show how matrix multiplication is used to identify patterns and scrub data. 
Corresponding exercises have been created to allow students to explore using matrix 
multiplication in various ways. 

• In our conversations with colleagues in industry and electrical engineering, we heard 
repeatedly how important understanding abstract vector spaces is to their work. After 
reading the reviewers ' comments for Chapter 4, we reorganized the chapter, condens
ing some of the material on column, row, and null spaces; moving Markov chains to 
the end of Chapter 5; and creating a new section on signal processing. We view signals 
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as an infinite dimensional vector space and illustrate the usefulness of linear trans
formations to filter out unwanted "vectors" (a.k.a. noise), analyze data, and enhance 
signals. 

• By moving Markov chains to the end of Chapter 5, we can now discuss the steady 
state vector as an eigenvector. We also reorganized some of the summary material on 
determinants and change of basis to be more specific to the way they are used in this 
chapter. 

• In Chapter 6, we present pattern recognition as an application of orthogonality, and 
the section on linear models now illustrates how machine learning relates to curve 
fitting. 

• Chapter 9 on optimization was previously available only as an online file. It has 
now been moved into the regular textbook where it is more readily available to 
faculty and students. After an opening section on finding optimal strategies to two
person zero-sum games, the rest of the chapter presents an introduction to linear 
programming-from two-dimensional problems that can be solved geometrically to 
higher dimensional problems that are solved using the Simplex Method. 

Other Changes 
• In the high-tech industry, where most computations are done on computers, judging 

the validity of information and computations is an important step in preparing and 
analyzing data. In this edition, students are encouraged to learn to analyze their own 
computations to see if they are consistent with the data at hand and the questions being 
asked. For this reason, we have added "Reasonable Answers" advice and exercises to 
guide students. 

• We have added a list of projects to the end of each chapter (available online at 
bi t . l y /30 IM8gT and in My Lab Math). Some of these projects were previously 
available online and have a wide range of themes from using linear transformations 
to create art to exploring additional ideas in mathematics. They can be used for group 
work or to enhance the learning of individual students. 

• Free-response writing exercises have been added to MyLab Math, allowing faculty to 
ask more sophisticated questions online and create a paperless class without losing 
the richness of discussing how concepts relate to each other and introductory proof 
writing. 

• The electronic interactive textbook has been changed from Wolfram CDF to Wolfram 
Cloud format. This allows faculty and students to interact with figures and examples 
on a wider variety of electronic, devices, without the need to install the CDF Player. 

• Power Point lecture slides have been updated to cover all sections of the text and cover 
them more thoroughly. 

Distinctive Features 

Early Introduction of Key Concepts 

Many fundamental ideas of linear algebra are introduced within the first seven lectures, 
in the concrete setting of!R", and then gradually examined from different points of view. 
Later generalizations of these concepts appear as natural extensions of familiar ideas, 
visualized through the geometric intuition developed in Chapter 1. A major achievement 
of this text is that the level of difficulty is fairly even throughout the course. 
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A Modern View of Matrix Multiplication 

Good notation is crucial, and the text reflects the way scientists and engineers actually 
use linear algebra in practice. The definitions and proofs focus on the columns of a matrix 
rather than on the matrix entries. A central theme is to view a matrix-vector product Ax 
as a linear combination of the columns of A. This modern approach simplifies many 
arguments, and it ties vector space ideas into the study of linear systems. 

Linear Transformations 
Linear transformations form a "thread" that is woven into the fabric of the text. Their 
use enhances the geometric flavor of the text. In Chapter 1, for instance, linear transfor
mations provide a dynamic and graphical view of matrix-vector multiplication. 

Eigenvalues and Dynamical Systems 

Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material is 
spread over several weeks, students have more time than usual to absorb and review these 
critical concepts. Eigenvalues are motivated by and applied to discrete and continuous 
dynamical systems, which appear in Sections 1.10, 4.8, and 5.9, and in five sections of 
Chapter 5. Some courses reach Chapter 5 after about five weeks by covering Sections 
2.8 and 2.9 instead of Chapter 4. These two optional sections present all the vector space 
concepts from Chapter 4 needed for Chapter 5. 

Orthogonality and Least-Squares Problems 

These topics receive a more comprehensive treatment than is commonly found in be
ginning texts. The original Linear Algebra Curriculum Study Group has emphasized 
the need for a substantial unit on orthogonality and least-squares problems, because 
orthogonality plays such an important role in computer calculations and numerical linear 
algebra and because inconsistent linear systems arise so often in practical work. 

P.~-~-~g~g_i_~~-1 _ F.~~~-~~~~- .... .. ... ...... .. ...... .......... .. .. ..... .. .. ... .. . 
Applications 

A broad selection of applications illustrates the power of linear algebra to explain 
fundamental principles and simplify calculations in engineering, computer science, 
mathematics, physics, biology, economics, and statistics. Some applications appear 
in separate sections; others are treated in examples and exercises. In addition, each 
chapter opens with an introductory vignette that sets the stage for some application 
of linear algebra and provides a motivation for developing the mathematics that 
follows. 

A Strong Geometric Emphasis 

Every major concept in the course is given a geometric interpretation, because many 
students learn better when they can visualize an idea. There are substantially more 
drawings here than usual, and some of the figures have never before appeared in a linear 
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algebra text. Interactive versions of these figures , and more, appear in the electronic 
version of the textbook. 

Examples 

This text devotes a larger proportion of its expository material to examples than do most 
linear algebra texts. There are more examples than an instructor would ordinarily present 
in class. But because the examples are written carefully, with lots of detail, students can 
read them on their own. 

Theorems and Proofs 
Important results are stated as theorems. Other useful facts are displayed in tinted boxes, 
for easy reference. Most of the theorems have formal proofs, written with the beginner 
student in mind. In a few cases, the essential calculations of a proof are exhibited in a 
carefully chosen example. Some routine verifications are saved for exercises, when they 
will benefit students. 

Practice Problems 
A few carefully selected Practice Problems appear just before each exercise set. Com
plete solutions follow the exercise set. These problems either focus on potential trouble 
spots in the exercise set or provide a "warm-up" for the exercises, and the solutions often 
contain helpful hints or warnings about the homework. 

Exercises 
The abundant supply of exercises ranges from routine computations to conceptual ques
tions that require more thought. A good number of innovative questions pinpoint con
ceptual difficulties that we have found on student papers over the years. Each exercise 
set is carefully arranged in the same general order as the text; homework assignments 
are readily available when only part of a section is discussed. A notable feature of the 
exercises is their numerical simplicity. Problems "unfold" quickly, so students spend 
little time on numerical calculations. The exercises concentrate on teaching understand
ing rather than mechanical calculations. The exercises in the Sixth Edition maintain the 
integrity of the exercises from previous editions, while providing fresh problems for 
students and instructors. 

Exercises marked with the symbol ii are designed to be worked with the aid of 
a "matrix program" (a computer program, such as MATLAB, Maple, Mathematica, 
MathCad, or Derive, or a programmable calculator with matrix capabilities, such as those 
manufactured by Texas Instruments). 

True/False Questions 
To encourage students to read all of the text and to think critically, we have developed 
over 300 simple true/false questions that appear throughout the text, just after the com
putational problems. They can be answered directly from the text, and they prepare 
students for the conceptual problems that follow. Students appreciate these questions
after they get used to the importance of reading the text carefully. Based on class testing 
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and discussions with students, we decided not to put the answers in the text. (The Study 
Guide tells the students where to find the answers to the odd-numbered questions.) An 
additional 150 true/false questions (mostly at the ends of chapters) test understanding of 
the material. The text does provide simple T/F answers to most of these supplementary 
exercises, but it omits the justifications for the answers (which usually require some 
thought). 

Writing Exercises 

An ability to write coherent mathematical statements in English is essential for all stu
dents of linear algebra, not just those who may go to graduate school in mathematics. 
The text includes many exercises for which a written justification is part of the answer. 
Conceptual exercises that require a short proof usually contain hints that help a student 
get started. For all odd-numbered writing exercises, either a solution is included at the 
back of the text or a hint is provided and the solution is given in the Study Guide, 
described below. 

Projects 

A list of projects (available online at bi t . l y I 3 0 I M8gT) have been identified at the end 
of each chapter. They can be used by individual students or in groups. These projects 
provide the opportunity for students to explore fundamental concepts and applications 
in more detail. Two of the projects even encourage students to engage their creative side 
and use linear transformations to build artwork. 

Reasonable Answers 
Many of our students will enter a workforce where important decisions are being made 
based on answers provided by computers and other machines. The Reasonable Answers 
boxes and exercises help students develop an awareness of the need to analyze their 
answers for correctness and accuracy. 

Computational Topics 

The text stresses the impact of the computer on both the development and practice of 
linear algebra in science and engineering. Frequent Numerical Notes draw attention 
to issues in computing and distinguish between theoretical concepts, such as matrix 
inversion, and computer implementations, such as LU factorizations. 

~~~-~~~~~~-g-~~~-~~ ---------------------------------------------------------
David Lay was grateful to many people who helped him over the years with various 
aspects of this book. He was particularly grateful to Israel Gohberg and Robert Ellis for 
more than fifteen years of research collaboration, which greatly shaped his view of linear 
algebra. And he was privileged to be a member of the Linear Algebra Curriculum Study 
Group along with David Carlson, Charles Johnson, and Duane Porter. Their creative 
ideas about teaching linear algebra have influenced this text in significant ways. He often 
spoke fondly of three good friends who guided the development of the book nearly from 



Preface xv 

the beginning-giving wise counsel and encouragement-Greg Tobin, publisher; Laurie 
Rosatone, former editor; and William Hoffman, former editor. 

Judi and Steven have been privileged to work on recent editions of Professor David 
Lay 's linear algebra book. In making this revision, we have attempted to maintain the 
basic approach and the clarity of style that has made earlier editions popular with students 
and faculty. We thank Eric Schulz for sharing his considerable technological and peda
gogical expertise in the creation of the electronic textbook. His help and encouragement 
were essential in bringing the figures and examples to life in the Wolfram Cloud version 
of this textbook. 

Mathew Hudelson has been a valuable colleague in preparing the Sixth Edition; he 
is always willing to brainstorm about concepts or ideas and test out new writing and 
exercises. He contributed the idea for new vignette for Chapter 3 and the accompanying 
project. He has helped with new exercises throughout the text. Harley Weston has pro
vided Judi with many years of good conversations about how, why, and who we appeal 
to when we present mathematical material in different ways. Katerina Tsatsomeros' 
artistic side has been a definite asset when we needed artwork to transform (the fish 
and the sheep), improved writing in the new introductory vignettes, or information from 
the perspective of college-age students. 

We appreciate the encouragement and shared expertise from Nella Ludlow, Thomas 
Fischer, Amy Johnston, Cassandra Seubert, and Mike Manzano. They provided infor
mation about important applications of linear algebra and ideas for new examples and 
exercises. In particular, the new vignettes and material in Chapters 4 and 6 were inspired 
by conversations with these individuals. 

We are energized by Sepideh Stewart and the other new Linear Algebra Curricu
lum Study Group (LACSG 2.0) members: Sheldon Axler, Rob Beezer, Eugene Boman, 
Minerva Catral, Guershon Hare! , David Strong, and Megan Wawro. Initial meetings of 
this group have provided valuable guidance in revising the Sixth Edition. 

We sincerely thank the following reviewers for their careful analyses and construc
tive suggestions: 

Maila C. Brucal-Hallare, Norfolk State University 
Kristen Campbell, Elgin Community College 
Charles Conrad, Volunteer State Community College 
R. Darrell Finney, Wilkes Community College 
Xiaofeng Gu, University of West Georgia 
Jeong Mi-Yoon, University of Houston- Downtown 
Michael T. Muzheve, Texas A&M U.-Kingsville 
Iason Rusodimos, Perimeter C. at Georgia State U. 
Rebecca Swanson, Colorado School of Mines 
Casey Wynn, Kenyon College 
Taoye Zhang, Penn State U.-Worthington Scranton 

Steven Burrow, Central Texas College 
J. S. Chahal, Brigham Young University 
Kevin Farrell, Lyndon State College 
Chris Fuller, Cumberland University 
Jeffrey Jauregui, Union College 
Christopher Murphy, Guilford Tech. C.C. 
Charles I. Odion, Houston Community College 
Desmond Stephens, Florida Ag. and Mech. U. 
Jiyuan Tao, Loyola University-Maryland 
Amy Yielding, Eastern Oregon University 
Houlong Zhuang, Arizona State University 

We appreciate the proofreading and suggestions provided by John Samons and 
Jennifer Blue. Their careful eye has helped to minimize errors in this edition. 

We thank Kristina Evans, Phil Oslin, and Jean Choe for their work in setting up 
and maintaining the online homework to accompany the text in MyLab Math, and for 
continuing to work with us to improve it. The reviews of the online homework done 
by Joan Saniuk, Robert Pierce, Doron Lubinsky and Adriana Corinaldesi were greatly 
appreciated. We also thank the faculty at University of California Santa Barbara, Uni
versity of Alberta, Washington State University and the Georgia Institute of Technology 
for their feedback on the My Lab Math course. Joe Vetere has provided much appreciated 
technical help with the Study Guide and Instructor's Solutions Manual. 
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We thank Jeff Weidenaar, our content manager, for his continued careful , well
thought-out advice. Project Manager Ron Hampton has been a tremendous help guiding 
us through the production process. We are also grateful to Stacey Sveum and Rosemary 
Morton, our marketers, and Jon Krebs, our editorial associate, who have also contributed 
to the success of this edition. 

Steven R. Lay and Judi J. McDonald 
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eText with Interactive Figures 
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PowerPoint® Lecture Slides 
Fully editable PowerPoint slides are available 
for all sections of the text. The slides include 

definitions, theorems, examples and solutions. 
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than writing on the board. PowerPoint slides 

are available to students (within the Video and 
Resource Library in Mylab Math) so that 

they can follow along. 

Copy and Assign Sample Assignments 

PARALLELOGRAM RULE FOR ADDITION 

• If u and v in IR(2 are represented as points in the plane, 
then u + v corresponds to the fourth vertex of the 
parallelogram whose other vertices are u, 0, and v. 
See Fig. 3 below. 
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analysis and a reporting dashboard to 
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course. Student performance data are 

presented at the class, section, and 
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Instructor Resources 
Online resources can be downloaded 
from Mylab Math or from 
www.pearson.com. 

Instructor's Edition 
ISBN 013588280X I 9780135882801 
The instructor's edition includes brief answers 
to al l exercises and provides instructor teaching 
and course structure suggestions, including 
sample syllabi. 

Instructor's Solution Manual 
Includes fully worked solutions to all exercises in 
the text and teaching notes for many sections. 

PowerPoint® Lecture Slides 
These fully editable lecture slides are available 
for al l sections of the text. 

Instructor's Technology Manuals 
Each manual provides detailed guidance for 
integrating technology throughout the course, 
written by faculty who teach with the software 
and this text. Available For MATLAB, Maple, 
Mathematica, and Texas Instruments graphing 
calculators. 

TestGen® 
TestGen (www.pearsoned.com/testgen) enables 
instructors to build, edit, print, and administer 
tests using a computerized bank of questions 
developed to cover all the objectives of the text. 
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Student Resources 
Additional resources to enhance 
student success. All resources can be 
downloaded from Mylab Math. 

Study Guide 
Provides detailed worked-out solut ions to 
every third odd-numbered exercise. Also, a 
complete explanation is provided whenever 
an odd-numbered writing exercise has a 
Hint in the answers. Special subsections of 
the Study Guide suggest how to master key 
concepts of the course. Frequent "Warnings" 
ident ify common errors and show how to 
prevent them. MATLAB boxes introduce 
commands as they are needed. Appendixes 
in the Study Guide provide comparab le infor
mation about Maple, Mathematica, and TI 
graphing ca lcu lators. Availab le within MyLab 
math and also available for purchase sepa
rate ly using ISBN 9780135851234. 

Getting Started with Technology 
A quick-start guide for students to the tech
nology they may use in this course. Available 
for MATLAB, Maple, Mathematica, or Texas 
Instrument graphing calculators. Downloadable 
from MyLab Math. 

Projects 
Exploratory projects, written by experienced 
facu lty members, invite students to discover 
applications of linear algebra. 
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This course is potentially the most interesting and worthwhile undergraduate mathe
matics course you will complete. In fact, some students have written or spoken to us 
after graduation and said that they still use this text occasionally as a reference in their 
careers at major corporations and engineering graduate schools. The following remarks 
offer some practical advice and information to help you master the material and enjoy 
the course. 

In linear algebra, the concepts are as important as the computations. The simple 
numerical exercises that begin each exercise set only help you check your understanding 
of basic procedures. Later in your career, computers will do the calculations, but you 
will have to choose the calculations, know how to interpret the results, analyze whether 
the results are reasonable, then explain the results to other people. For this reason, many 
exercises in the text ask you to explain or justify your calculations. A written explanation 
is often required as part of the answer. If you are working on questions in My Lab Math, 
keep a notebook for calculations and notes on what you are learning. For odd-numbered 
exercises in the textbook, you will find either the desired explanation or at least a good 
hint. You must avoid the temptation to look at such answers before you have tried to write 
out the solution yourself. Otherwise, you are likely to think you understand something 
when in fact you do not. 

To master the concepts of linear algebra, you will have to read and reread the text 
carefully. New terms are in boldface type, sometimes enclosed in a definition box. 
A glossary of terms is included at the end of the text. Important facts are stated as 
theorems or are enclosed in tinted boxes, for easy reference. We encourage you to read 
the Preface to learn more about the structure of this text. This will give you a framework 
for understanding how the course may proceed. 

In a practical sense, linear algebra is a language. You must learn this language the 
same way you would a foreign language-with daily work. Material presented in one 
section is not easily understood unless you have thoroughly studied the text and worked 
the exercises for the preceding sections. Keeping up with the course will save you lots 
of time and distress! 

Numerical Notes 
We hope you read the Numerical Notes in the text, even if you are not using a computer or 
graphing calculator with the text. In real life, most applications of linear algebra involve 
numerical computations that are subject to some numerical error, even though that error 
may be extremely small. The Numerical Notes will warn you of potential difficulties in 
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using linear algebra later in your career, and if you study the notes now, you are more 
likely to remember them later. 

If you enjoy reading the Numerical Notes, you may want to take a course later in 
numerical linear algebra. Because of the high demand for increased computing power, 
computer scientists and mathematicians work in numerical linear algebra to develop 
faster and more reliable algorithms for computations, and electrical engineers design 
faster and smaller computers to run the algorithms. This is an exciting field, and your 
first course in linear algebra will help you prepare for it. 

Study Guide 
To help you succeed in this course, we suggest that you use the Study Guide available 
in MyLab Math and for purchase in print (ISBN 9780135851234). Not only will it help 
you learn linear algebra, it also will show you how to study mathematics. At strategic 
points in your textbook, marginal notes will remind you to check that section of the Study 
Guide for special subsections entitled "Mastering Linear Algebra Concepts." There you 
will find suggestions for constructing effective review sheets of key concepts. The act 
of preparing the sheets is one of the secrets to success in the course, because you will 
construct links between ideas. These links are the "glue" that enables you to build a solid 
foundation for learning and remembering the main concepts in the course. 

The Study Guide contains a detailed solution to more than a third of the odd
numbered exercises, plus solutions to all odd-numbered writing exercises for which 
only a hint is given in the Answers section of this book. The Guide is separate from 
the text because you must learn to write solutions by yourself, without much help. (We 
know from years of experience that easy access to solutions in the back of the text slows 
the mathematical development of most students.) The Guide also provides warnings of 
common errors and helpful hints that call attention to key exercises and potential exam 
questions. 

If you have access to technology-MATLAB, Octave, Maple, Mathematica, or a TI 
graphing calculator-you can save many hours of homework time. The Study Guide is 
your "lab manual" that explains how to use each of these matrix utilities. It introduces 
new commands when they are needed. You will also find that most software commands 
you might use are easily found using an online search engine. Special matrix commands 
will perform the computations for you! 

What you do in your first few weeks of studying this course will set your pattern 
for the term and determine how well you finish the course. Please read "How to Study 
Linear Algebra" in the Study Guide as soon as possible. Many students have found the 
strategies there very helpful, and we hope you will, too. 
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Linear Equations in 
Linear Algebra 

Introductory Example 

LINEAR MODELS IN ECONOMICS 
AND ENGINEERING 
It was late summer in 1949. Harvard Professor Wassily 

Leontief was carefully feeding the last of his punched cards 
into the university's Mark II computer. The cards contained 

information about the U.S. economy and represented a 

summary of more than 250,000 pieces of information 
produced by the U.S. Bureau of Labor Statistics after two 

years of intensive work. Leontief had divided the U.S. 

economy into 500 "sectors," such as the coal industry, 

the automotive industry, communications, and so on. 
For each sector, he had written a linear equation that 

described how the sector distributed its output to the other 

sectors of the economy. Because the Mark II, one of the 
largest computers of its day, could not handle the resulting 

system of 500 equations in 500 unknowns, Leontief had 

distilled the problem into a system of 42 equations in 

42 unknowns. 

Programming the Mark II computer for Leontief's 

42 equations had required several months of effort, and he 

was anxious to see how long the computer would take to 

solve the problem. The Mark II hummed and blinked for 
56 hours before finally producing a solution. We will 

discuss the nature of this solution in Sections 1.6 and 2.6. 

Leontief, who was awarded the 1973 Nobel Prize 

in Economic Science, opened the door to a new era 

in mathematical modeling in economics. His efforts at 

Harvard in 1949 marked one of the first significant uses 

of computers to analyze what was then a large-scale 

mathematical model. Since that time, researchers in 

many other fields have employed computers to analyze 
mathematical models. Because of the massive amounts of 

data involved, the models are usually linear; that is, they 

are described by systems of linear equations. 

The importance of linear algebra for applications has 

risen in direct proportion to the increase in computing 
power, with each new generation of hardware and software 

triggering a demand for even greater capabilities. Computer 

science is thus intricately linked with linear algebra through 
the explosive growth of parallel processing and large-scale 

computations. 

Scientists and engineers now work on problems far 

more complex than even dreamed possible a few decades 

ago. Today, linear algebra has more potential value for 

students in many scientific and business fields than any 

other undergraduate mathematics subject! The material in 
this text provides the foundation for further work in many 

interesting areas. Here are a few possibilities; others will 

be described later. 

• Oil exploration. When a ship searches for offshore 

oil deposits, its computers solve thousands of 

separate systems of linear equations every day. 

The seismic data for the equations are obtained 

from underwater shock waves created by explosions 

from air guns. The waves bounce off subsurface 
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rocks and are measured by geophones attached to 

mile-long cables behind the ship. 

• Linear programming. Many important management 

decisions today are made on the basis of linear 

programming models that use hundreds of 

variables. The airline industry, for instance, employs 

linear programs that schedule flight crews, monitor 

the locations of aircraft, or plan the varied schedules 

of support services such as maintenance and 

terminal operations. 

• Electrical networks. Engineers use simulation 
software to design electrical circuits and microchips 

involving millions of transistors. Such software 

relies on linear algebra techniques and systems of 

linear equations. 

• Artificial intelligence. Linear algebra plays a key 

role in everything from scrubbing data to facial 

recognition. 

• Signals and signal processing. From a digital 

photograph to the daily price of a stock, important 
information is recorded as a signal and processed 

using linear transformations. 

• Machine learning. Machines (specifically comput

ers) use linear algebra to learn about anything from 
online shopping preferences to speech recognition. 

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them 
to introduce some of the central concepts of linear algebra in a simple and concrete 
setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear 
equations. This algorithm will be used for computations throughout the text. Sections 1.3 
and 1.4 show how a system of linear equations is equivalent to a vector equation and to 
a matrix equation. This equivalence will reduce problems involving linear combinations 
of vectors to questions about systems of linear equations. The fundamental concepts of 
spanning, linear independence, and linear transformations, studied in the second half of 
the chapter, will play an essential role throughout the text as we explore the beauty and 
power of linear algebra. 

Ill __ ? Y..~-~~-~ ~._?.f .. ~!~-~~~ . ~-9-~. ~~ i_~-~-~- ............................ ................. -.... ---
A linear equation in the variables x 1, ••. , x 11 is an equation that can be written in the 
form 

(1) 

where b and the coefficients a 1, .•• , a,, are real or complex numbers, usually known 
in advance. The subscript n may be any positive integer. In textbook examples and 
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000, 
or even larger. 

The equations 

4x1 - 5x2 + 2 = x 1 and x2 = 2( -J6 - x 1) + x 3 

are both linear because they can be rearranged algebraically as in equation (1): 

The equations 

are not linear because of the presence of x 1 x 2 in the first equation and Ft in the second. 


